
Temperature-Guided Instruction Caching Using
Page-Based Hardware Attributes
Henry Kao, Nikhil Sreekumar, Prabhdeep Singh Soni, Ali Sedaghati,

Fang Su∗, Bryan Chan, Maziar Goudarzi and Reza Azimi
Huawei Technologies Canada, Toronto, Canada Huawei, Shenzhen, China∗

Email: {henry.kao1, nikhil.sreekumar, prabhdeep.singh.soni3, ali.829657}@huawei.com
{fang.su, bryan.chan, maziar.goudarzi, reza.azimi1}@huawei.com

ab
se

il
ab

se
il*

bu
lle

t
bu

lle
t*

cla
ng

cla
ng

*
gc

c
gc

c*
py

th
on

py
th

on
*

ra
pi

dj
so

n
ra

pi
dj

so
n*

sq
lit

e
sq

lit
e*

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 C

yc
le

s retire
other
mem
issue
depend
mispred.
ifetch

Fig. 1: Top-Down profiles of proxy mobile benchmarks.
PGO’d benchmarks are marked with a “*”.

Abstract—Modern mobile CPU software pose challenges for
conventional instruction cache replacement policies due to their
complex runtime behavior causing high reuse distance between
executions of the same instruction. Mobile code commonly suffers
from large amounts of stalls in the CPU frontend and thus
starvation of the rest of the CPU resources. We present a
novel software-hardware co-design approach that enables the
compiler to analyze, classify, and transform code based on
"temperature" (hot/cold), and to provide the hardware with a
summary of code temperature utilizing ARM’s PBHA (Page-
Based Hardware Attributes). The lightweight hardware extension
employs code temperature attributes to optimize the instruction
cache replacement policy resulting in the eviction rate reduction
of hot code. TRRIP can reduce the L2 MPKI for instructions by
26.5% resulting in geomean speedup of 4.2%, on top of RRIP
cache replacement running mobile code already optimized using
PGO.

I. INTRODUCTION & MOTIVATION

The system software on mobile platforms include shared
libraries that implement user interface behavior, graphics ren-
dering, hardware abstraction interfaces, inter-process commu-
nication, language runtimes, as well as interpreters and JIT
(Just in Time)/AOT (Ahead of Time) compilers. All appli-
cations will call/use system software components during their
execution, thus system software performance optimizations do
not only pertain to specific applications; their effect will be ob-
served system-wide spanning across all applications. We have
observed that the system software components exhibit frontend
bottlenecks due to instruction cache misses. Instrumentation
PGO along with the associated code layout optimizations have

ab
se

il

ab
se

il~

bu
lle

t

bu
lle

t~

cla
ng

cla
ng

~

gc
c

gc
c~

py
th

on

py
th

on
~

ra
pi

dj
so

n

ra
pi

dj
so

n~

sq
lit

e

sq
lit

e~

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 A

cc
es

se
s

0-4 5-8 9-16 16+

Fig. 2: Reuse distance distribution of hot cache lines measured
in the L2 cache.

shown considerable performance improvement, and is now
integrated into the compilation flow of mobile system software
(e.g., OpenHarmony [5]). Frontend bottlenecks however still
appears to be the most prevalent bottleneck even with PGO
applied in mobile software.

Figure 1 is a Top-Down analysis of the proxy benchmarks
that are optimized without PGO, and with PGO (marked
with an “*”) on a simulation platform detailed later in Sec-
tion III. Benchmarks clang [3], gcc [8], python [6] represent
the interpreters and JIT/AOT class of system components.
Google’s abseil [1] represent calls to C++ libraries, bullet [4]
for rendering, Tencent’s rapidjson [7] for JSON parsing, and
sqlite [9] for mobile database engine. Different input sets are
used for profile generation and evaluation. All the benchmarks
are built from source code using -O3 with full LTO (Link-Time
Optimization) enabled and use LLVM’s IR instrumentation
PGO. Fraction of cycles spent doing useful work/computation
is shown as (retire) or stalled in the different stages
of the CPU. Stalled cycles are collected from instruction
fetch (ifetch), branch mispredictions (mispred.), data
dependencies (depend), full issue queues (issue), and CPU
backend data access due to latencies in accessing caches and
DRAM (mem). Stalls not accounted for in the aforementioned
stages are classified as other. Comparing non-PGO’d to
PGO’d profiles, PGO reduces frontend stalls in the proxy
benchmarks, but does not completely solve the problem. Stalls
in the frontend are problematic as the subsequent stages of the
CPU pipeline are starved of work.



PGO itself is able to classify code temperature (i.e., hot,
warm and cold) by calculating the contribution of a region of
code to the total amount of execution time. Code is classified
as hot if it contributes a large portion to the total. Code is cold
if it only contributes a negligible portion to the total. PGO
in the compiler itself already makes a best effort to improve
spatial locality of hot code, so we inspect the temporal locality
instead by measuring reuse distance of the instruction cache
lines corresponding to the hot. We measure reuse on a cache
set granularity as the number of unique cache lines (both
instruction and data) seen between two subsequent access
of the same line. We target the L2 for our reuse distance
measurements as misses in L2 incur considerably higher costs
due to the increasing access latencies in downstream caches
and main memory which are often off-chip. Figure 2 shows a
breakdown of reuse distances of hot instruction cache lines at
the unified L2 cache level.

The reuse distance is measured for each benchmark in two
ways; (1) a base measurement where all unique lines are
counted between subsequent accesses of a hot line and (2)
and an optimistic measurement where only unique hot lines
are counted between subsequent accesses of a hot line (post-
fixed with “∼”). The former measures true temporal locality
of hot lines in the benchmark and the latter measures temporal
locality of hot lines in the absence of non-hot lines (i.e., warm,
cold and data lines). Most of the hot instruction lines show
high temporal locality in the base measurements since short
reuse distances, from 0 to 4, makes up ∼60% of the accesses.
Assuming a cache with a conventional replacement policy
that inserts new lines as MRU (Most Recently Used) (i.e.,
LRU replacement), or promotes existing lines to MRU (e.g.,
RRIP replacement [12]), a cache with 4-way set associativity
should be able to keep most of this portion of hot lines in the
cache without misses. Up to 8-way set associativity should be
able to keep most of the hot lines that make up 0-4 and 5-8
reuse distance in the distribution without incurring substantial
misses. Hot cache lines that have reuse distance of 9 or greater
will be evicted out of an 8-way set associative in conventional
replacement policies. A large portion of the code that takes up
a large portion of the benchmarks’s instruction count, hot code,
are evicted out of the cache before its next use due to poor
temporal locality (i.e., high reuse distances). A considerable
number of hot code evictions are caused by allocating non-
hot lines to the cache set seen by comparing the base and
optimistic reuse distance measurements. A method to prioritize
hot lines and de-prioritize non-hot lines in cache sets would
mitigate evictions on code lines most executed by the program.

Conventional and state-of-the-art cache replacement policies
aim to keep frequently used memory in the caches for longer,
and to keep infrequently used memory out of the caches.
They are limited to seeing only short phases of the memory
characteristics of the code due to hardware budget and the high
costs of tracking detailed and deep history runtime behavior.
Application behaviors spanning over long duration can only
be realistically captured using software profiling techniques
as in the case of PGO. Software profiling is able to classify

Source

Compiler

Input

ELF1

ELF2

Prof.
Data

Loader

Processor MMUvAddr
Caches/
Memory

Page

OS

PTEs

Hardware

pAddr

PTEA

PTE

Code Generation

1

2

3

4

5

6

7

8

9 10

Frame Prot. Heat...

11

Page Table

Fig. 3: Co-designed components and interfaces for
temperature-guided cache replacement using ARM’s PBHA.

0
Immediate

2
Far

0
Distant

1
Intermediate

No
Victim

No
Victim

No
Victim

Re-Reference
Re-Reference

Re-Reference

Default InsertionHot Insertion Evict

Fig. 4: Temperature-guided RRIP (TRRIP) policy using four
states.

code temperature for substantially longer execution windows.
Cache replacement policies would benefit from knowing the
temperature of instruction memory when deciding how to
prioritize keeping it in the cache; the hotter the code, the
longer the corresponding cache lines should stay in the cache.
However this information can only be sustainably obtained
using software mechanisms.

II. LIGHTWEIGHT TEMPERATURE-GUIDED INSTRUCTION
CACHING OVERVIEW

We propose a software-hardware co-designed cache re-
placement policy that utilizes PGO to determine the insertion
priority of instruction cache lines in the cache. Figure 3
illustrates the various interfaces between co-designed compo-
nents labeled with numbers to follow the description of the
technique. 1 The flow starts with compiling program source
code using a PGO-enabled compiler. 2 The compiler will
create the first executable, ELF11. The executable is run with
input sets representative of how it will be used in real-world
scenarios, after which 3 a profile of the application will be
generated. 4 The profile along with the original source of the
program 1 is fed back into the PGO-enabled compiler to re-
optimized the code. 5 A final executable ELF2 is generated.
This re-optimized executable uses profiling results 4 to place
code into different code sections of the ELF based on the
classified temperature. Executing a program requires it to be
loaded into memory first, which is the job of the loader.
6 The loader reads headers and sections in ELF2 along

with linking and runtime information to map the program to
pages in memory. The loader calls functionality of the OS
to allocate pages 8 for the executable, and also generate
corresponding PTEs (Page Table Entry) 7 , populating each
entry with the runtime information obtained from ELF2. The
typical information may include access permission flags (e.g.,

1The ELF (Executable and Linkable Format) executable format is predomi-
nantly used on Linux and Unix based systems, including mobile or embedded
platforms, such as Android.



TABLE I: Simulator configuration.

Component Configuration

Core 6-wide dispatch, 128 entry ROB, 2GHz,
pseudo-FDIP prefetching

Branch 1K-entry BTB, 512-entry indirect-BTB, 256-
entry loop predictor, 1K-entry global predictor

L1-D 64KB, 4-way, LRU replacement, 1/3
(tag/data)-cycle latency, stride prefetcher

L1-I 64KB, 4-way, LRU replacement, 1/3
(tag/data)-cycle latency, stride prefetcher

Unified Shared L2
512kB (128kB per core), 8-way, TRRIP re-
placement, 8/12 (tag/data)-cycle latency, inclu-
sive, stride prefetcher

Unified Shared SLC 1MB, 16-way, LRU replacement, 10/30
(tag/data)-cycle latency, exclusive

DRAM 8 chips/DIMM, 4 DIMMs, 7.6 GB/s controller
bandwidth, 400-cycle latency

read-only, read-write). ARM’s PBHA (Page-Based Hardware
Attributes) [2] offers additional implementation-defined PTE
bits to be transferred with memory requests. We modify the
loader to read and populate existing PBHA bits allocated in
the PTE to store temperature-based information of the code
sections in ELF2 allowing a transparent lightweight interface
to transfer information between software and hardware with
minimal to no additional implementation cost, in contrast to
prior art which requires new instructions [13], [14] or mod-
ification to the existing ISA [16], or additional logic/storage
need in the CPU microarchitecture or caches [15], [17]. 9
The program executes conventionally after being loaded into
memory. 10 Instructions of the loaded program are fetched
from caches or memory. This may require the translation of
the instruction addresses from virtual (vAddr) to physical
(pAddr) by the MMU 11 . PTE temperature bits in the MMU
are read and transferred along with the memory requests to the
caches. The replacement policies are augmented to react to the
temperature bits in the memory requests to prioritize keeping
hot instruction memory in the cache for longer, while keeping
cold code out of the cache to reduce CPU frontend stalls due
to instruction cache misses.

Figure 4 illustrates the temperature-guided cache replace-
ment on top of RRIP [12], which we call TRRIP. Each
state represents a re-reference prediction for a given cache
line in a set. Immediate being the most likely to be re-
referenced in the near future and thus is priotized in the cache
set, and Distant being least likely to be re-refereneced
in the near future, and first to be evicted. Baseline RRIP
policies pessimistically insert cache lines at Far/Distant
re-reference states and only get promoted to Immediate
upon a subsequent cache hit. TRRIP directly inserts hot cache
lines at Immediate since offline profiling has provided
information that it is likely to be referenced more than other
cache lines due to frequent execution. TRRIP priortizes hot
cache lines and de-prioritize non-hot lines in cache to reduce
evictions, and hence misses, on the most executed code lines
in the program.

ab
sei

l
bu

llet cla
ng gcc

py
tho

n

rap
idjs

on
sql

ite

ge
om

ea
n

4
2
0
2
4
6
8

10

Sp
ee

du
p 

(%
)

-5
.7

-8
.7

LRU CLIP TRRIP

Fig. 5: Speedup of evaluated mechanisms normalized to SR-
RIP running the PGO’d benchmarks.

III. PERFORMANCE IMPACT & CONCLUSION

We simulate the co-designed temperature-based RRIP pol-
icy using Sniper [10] configured to represent energy-efficient
cores of a heterogeneous mobile SoC (System on Chip) de-
tailed in Table I. Different benchmarks have different duration
of start-up code which we are not interested in. We fast
forward to the hot part of the benchmark before starting per-
formance measurements and then simulate 400M instructions
afterward. Figure 5 shows speedup results for LRU, CLIP [11]
and TRRIP cache replacement normalized to SRRIP [12]
cache replacement. All evaluated techniques are applied to the
L2 cache running the PGO’d benchmarks. SRRIP generally
performs better than LRU and acts as a good foundation
to build future techniques. Prior art CLIP blindly prioritizes
all instruction cache lines on top of the RRIP policy. CLIP
performs better on frontend bound applications compared to
SRRIP with geomean speedup of 2%. TRRIP differs from
CLIP by selectively prioritizing hot instruction cache lines
using information provided by PGO. The selective priotization
of hot instruction lines by TRRIP obtains a geomean speedup
of 4.2%, greater than CLIP. TRRIP reduces L2 instruction
MPKI (Misses Per Kilo-Instruction) by a geomean of 26.5%,
compared to CLIP with a geomean L2 instruction MPKI
reduction of 13.6%.

Our proposed temperature-guided co-design cache replace-
ment mechanism requires no additional instructions nor mod-
ification to the ISA. It also incurs negligible power and area
costs as we do not implement any additional hardware struc-
tures to track runtime information. Temperature information
is provided using PGO and transferred with memory requests
using ARM’s PBHA implementation on the processor.

REFERENCES

[1] Abseil. https://github.com/abseil/abseil-cpp. Accessed: 2025-03-29.
[2] Arm® cortex®-a510 core technical reference manual – revision: lat-

est. https://developer.arm.com/documentation/101604/latest/. Accessed:
2024-06-18.

[3] Clang source. https://github.com/llvm/llvm-project. Accessed: 2024-06-
18.

https://github.com/abseil/abseil-cpp
https://developer.arm.com/documentation/101604/latest/
https://github.com/llvm/llvm-project


[4] Llvm test suite. https://github.com/llvm/llvm-test-suite. Accessed: 2025-
03-29.

[5] Openharmony. https://gitee.com/explore/harmony. Accessed: 2025-05-
13.

[6] Python source. https://github.com/python/cpython. Accessed: 2024-06-
18.

[7] Rapidjson. https://github.com/Tencent/rapidjson. Accessed: 2025-03-29.
[8] Spec cpu® 2017. https://www.spec.org/cpu2017/. Accessed: 2024-06-

18.
[9] Sqlite. https://www.sqlite.org/. Accessed: 2024-06-18.

[10] Trevor E. Carlson, Wim Heirman, Stijn Eyerman, Ibrahim Hur, and
Lieven Eeckhout. An evaluation of high-level mechanistic core models.
ACM Transactions on Architecture and Code Optimization (TACO),
2014.

[11] Aamer Jaleel, Joseph Nuzman, Adrian Moga, Simon C. Steely, and Joel
Emer. High performing cache hierarchies for server workloads: Relaxing
inclusion to capture the latency benefits of exclusive caches. In 2015
IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA), pages 343–353, 2015.

[12] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, and Joel Emer. High
performance cache replacement using re-reference interval prediction
(rrip). In Proceedings of the 37th Annual International Symposium on
Computer Architecture, ISCA ’10, page 60–71, New York, NY, USA,
2010. Association for Computing Machinery.

[13] Tanvir Ahmed Khan, Nathan Brown, Akshitha Sriraman, Niranjan K
Soundararajan, Rakesh Kumar, Joseph Devietti, Sreenivas Subramoney,
Gilles A Pokam, Heiner Litz, and Baris Kasikci. Twig: Profile-guided
btb prefetching for data center applications. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO ’21,
page 816–829, New York, NY, USA, 2021. Association for Computing
Machinery.

[14] Tanvir Ahmed Khan, Dexin Zhang, Akshitha Sriraman, Joseph Devietti,
Gilles Pokam, Heiner Litz, and Baris Kasikci. Ripple: Profile-guided in-
struction cache replacement for data center applications. In Proceedings
of the 48th International Symposium on Computer Architecture (ISCA),
ISCA 2021, June 2021.

[15] Nayana Prasad Nagendra, Bhargav Reddy Godala, Ishita Chaturvedi,
Atmn Patel, Svilen Kanev, Tipp Moseley, Jared Stark, Gilles A. Pokam,
Simone Campanoni, and David I. August. Emissary: Enhanced miss
awareness replacement policy for l2 instruction caching. In Proceedings
of the 50th Annual International Symposium on Computer Architecture,
ISCA ’23, New York, NY, USA, 2023. Association for Computing
Machinery.

[16] Shixin Song, Tanvir Ahmed Khan, Sara Mahdizadeh Shahri, Akshitha
Sriraman, Niranjan K Soundararajan, Sreenivas Subramoney, Daniel A.
Jiménez, Heiner Litz, and Baris Kasikci. Thermometer: profile-guided
btb replacement for data center applications. In Proceedings of the 49th
Annual International Symposium on Computer Architecture, ISCA ’22,
page 742–756, New York, NY, USA, 2022. Association for Computing
Machinery.

[17] Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh, Margaret Martonosi,
Simon C. Steely, and Joel Emer. Ship: Signature-based hit predictor
for high performance caching. In 2011 44th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 430–
441, 2011.

https://github.com/llvm/llvm-test-suite
https://gitee.com/explore/harmony
https://github.com/python/cpython
https://github.com/Tencent/rapidjson
https://www.spec.org/cpu2017/
https://www.sqlite.org/

	Introduction & Motivation
	Lightweight Temperature-Guided Instruction Caching Overview
	Performance Impact & Conclusion
	References

